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The Ulam spiral unraveled. 
 

Introduction. 
 

Little is known about the exact distribution of the prime numbers, and yet 

prime numbers can exhibit stunning regularities. A fine example is the spiral 

of the Polish mathematician Stanislaw Ulam (Fig. 1). Ulam discovered on 

certain diagonals in the spiral patterns within the prime numbers that are still 

unexplained.  

 

In this article the Ulam spiral is completely unraveled. By placing a 

counterclockwise Ulam spiral with start value zero (the Ulam 0−spiral) in a 

Cartesian coordinate system, patterns within the prime numbers can be 

examined both analytically and geometrically.  

It is found that the Ulam 0−spiral is completely defined by eight families of 

quadratic functions. Factorable members within the eight families determine 

the elimination of natural numbers as prime number in the spiral. 

The definition of the eight families of functions makes it possible to examine 

any rectangular area or diagonal, without fully constructing the spiral.  

With the eight families of functions the Cartesian coordinates of a given 

natural number can be calculated in a few steps. 
 Fig. 1:  The counterclockwise Ulam spiral. 
 
 

Decennia old questions about the Ulam spiral. 
 

The Ulam spiral, as discovered in 1963, is special because the graphical display shows that prime numbers have the 

tendency to appear on certain diagonals within the spiral. These clear patterns continue even when the spiral grows 

bigger. The spiral can start with the initial value  1  as used by Ulam (Fig. 2a), or with any other natural number.  

A start value  41  gives an uninterrupted sequence of  40  prime numbers (Fig. 2b) that is reducible to Euler's famous 

formula for prime numbers  n
2
 + n + 41. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 2ab:  An  81 x 81  matrix of the Ulam spiral with start value 1 (left) and 41 (right) 

 

According to Ulam and his team the patterns in the spiral imply that there are many combinations  b, c ∈ Z,  for 

which the function  f(n) = 4n
2
 + bn + c  generates more prime numbers than other combinations.  

Ulam and his team came up with unanswered questions like: 

1. Are prime numbers equally distributed over each quadrant of the grid? 

2. Are there lines that contain infinitely many prime numbers? 
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The Ulam spiral in a Cartesian coordinate system. 
 

In this paper a counterclockwise Ulam 0−spiral with start value  0  (Fig. 3b) is placed in the centre of a Cartesian 

coordinate system. 

 

The spiral with startvalue  41  in  Fig. 2b  has the function  f(n) = 4n
2
 + 2n + 41  on the SW main diagonal. In the Ulam 

0−spiral this diagonal visually appears as the  41th  SW diagonal  (Fig. 3c). The sequence  {1847, 2021, 2203, 2393, …}  

belongs via  n a  n + 21  also to the function  f(n) = 4n
2
 + 170n + 1847.  Ulam and his team found for the latter function 

for numbers smaller than 10 million a ratio of  0.466  for the prime numbers. 

 

In the spiral with startvalue  59  the SE main diagonal contains many prime numbers and has the matching function   

f(n) = 4n
2
 + 4n + 59.  When the spiral starts with the value  0,  this diagonal visually appears as the  59th  SE diagonal.  

The sequence  {3539, 3779, 4027, 4283, …}  (Fig. 3a)  thus also belongs to the function  f(n) = 4n
2
 + 236n + 3539. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 3:  An  81 x 81  matrix of the Ulam 0−spiral with startvalue  0. 
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Eight families of functions. 

 

When the counterclockwise Ulam 0−spiral is placed in the centre of a Cartesian plane the spiral is fully defined by 

the eight families of functions  fb,c(n) = 4n
2
 + bn + c,  with  n ∈ N0,  b, c ∈ Z  and  −3 ≤ b ≤ 4.   

Using the compass rose the value  b  is linked to the wind directions, e.g. the quadratic functions of NE diagonals 

with  b = −2  can also be written as  fc(nNE) = 4n
2
 − 2n + c  (Fig. 4).  

The linear projections of members of the eight families of functions start at their last intersection with the line  | y | = | x |.   

The coordinates of this intersection defines the function.  

 

Each number > 0  in the Ulam 0−spiral belongs to three consecutive families of functions, see for example the 

functions at the points  S,  T  and  U  in  Fig. 4.  Point  V  on the NE main diagonal is member of five families of 

functions. Further calculations (see "coordinates of a natural number") defines point  V  in the  E sector,  and 

therefore as member of the NE, E and SE family. 

 

With the eight families of functions any rectangular area or diagonal of the Ulam 0−spiral can be generated, without 

fully constructing the spiral.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4:  The eight families of functions and their special factorable members. 
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Factorable functions within the Ulam 0−spiral. 

 

The eight families of functions from the Ulam 0−spiral contain regular factorable members who have no prime 

numbers > p4,  i.e. the family members with  c = 0  and all diagonals with  c ≡ 0 (mod 2). 

Special factorable members from the eight families of functions in the Ulam 0−spiral are responsable for quickly 

eliminating natural numbers as prime number on other odd-diagonals,  since if  d │ f (n)  then  d │  f (n + d)  

 

The E, N, W and S functions, and the NW and SE functions with  c ≡ 1 (mod 2),  have infinitely many values  c(k)  

whereby a special family member can be factored, see the table below.  

The NE and SW functions with  c ≡ 1 (mod 2)  can never be resolved. Fig. 4 shows the linear projections of all 

special members within the selected area, from their last intersection with the line  | y | = | x |  onwards. 

The SE diagonal is defined as  fc(nSE) = 4n
2
 + 4n + c  and becomes via  n a  n − 1  the function  f(n) = 4n

2
 − 4n + c  

with almost identical features. There is a discontinuity at the SE main diagonal, see also further down. 

 

 

Direction     b Family of functions 

(with  c ∈∈∈∈ Z) 

Special members 

(with  k ∈∈∈∈ Z) 

c(k) −values of  special 

factorable members 

E   −3 fc(nE) = 4n2 − 3n + c c = −k ( 4k − 3 ) { 0,  −1,  −7,  −10,  −22,  −27,  −45, … } 

NE   −2 fc(nNE) = 4n2 − 2n + c   

N   −1 fc(nN) = 4n2 − 1n + c c = −k ( 4k − 1 ) { 0,  −3,  −5,  −14,  −18,  −33,  −39, … } 

NW     0 fc(nNW) = 4n2 + 0n + c c = −( 2k − 1 )2  { −1,  −9,  −25,  −49,  −81,  −121, … } 

W     1 fc(nW) = 4n2 + 1n + c c = −k ( 4k + 1 ) { 0,  −3,  −5,  −14,  −18,  −33,  −39, … } 

SW     2 fc(nSW) = 4n2 + 2n + c   

S     3 fc(nS) = 4n2 + 3n + c c = −k ( 4k + 3 ) { 0,  −1,  −7,  −10,  −22,  −27,  −45, … } 

SE     4 fc(nSE) = 4n2 + 4n + c c = −4k2 + 1 { 1,  −3,  −15,  −35,  −63,  −99, … } 

 (−4) f(n)  = 4n2 − 4n + c c = −4k2 + 1 { 1,  −3,  −15,  −35,  −63,  −99, … } 

 

 

Coordinates of a natural number in the spiral. 
 

For any natural number  g  in the Ulam 0−spiral the coordinates in the Cartesian coordinate system can be calculated 

through the families of functions. Define  m = 4/g   with  m ∈ R≥0  and  n = ⌊⌊⌊⌊ m ⌉⌉⌉⌉  with  n ∈ N0. 

The value  m − n  determines the sector in which  g  lies, see the table below. 

 

         m − n  Sector Function    (    x,    y ) 

−½ ≤  m − n  < −¼   E   fc(nE) = 4n2 − 3n + c     (    n,     c ) 

−¼ ≤  m − n  < 0    N   fc(nN) = 4n2 − 1n + c     (  −c,     n ) 

    0 ≤  m − n  < ¼   W   fc(nW) = 4n2 + 1n + c     (  −n,   −c ) 

  ¼ ≤  m − n  < ½   S   fc(nS) = 4n2 + 3n + c     (    c,   −n ) 

 

 

For example in the next table the coordinates are recalculated for the points  S,  T,  U  and  V  from Fig. 4.   

 

     g    m   n Function   c    (   x,     y ) 

  3479 29,491…   29   fc(nS) = 4n2 + 3n + c   28 S (   28, −29 ) 

  3528 29,698…   30   fc(nE) = 4n2 − 3n + c   18 T (   30,   18 ) 

  5534 37,195…   37   fc(nW) = 4n2 + 1n + c   21 U (−37, −21 ) 

  6972 41,749…   42   fc(nE) = 4n2 − 3n + c   42 V (  42,   42 ) 
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The distribution of prime numbers within the Ulam 0−spiral 
 

By placing the counterclockwise Ulam 0−spiral in a Cartesian coordinate system the quadratic functions of the eight 

families become visible via their projections. Patterns in the prime numbers can thus be examined both analytically 

and geometrically. 

Geometrically, the intersection can be determined of the projections of the quadratic function with special factorable 

members in the eight families of functions. When an intersection coincides with a lattice point the element is composite.  

The corresponding divisors than affect the behavior of elements within the family member via a fixed pattern.  

 

 

The function  f41(nSW)  in a Cartesian coordinate system  
 

The function  f41(nSW) = 4n
2
 + 2n + 41  from the Ulam 0−spiral appears in the Cartesian coordinate system at  n ≥ 21  

as the SW diagonal  f(n) = 4n
2
 + 170n + 1847  and the corresponding linear projection  x = y + 41.  For smaller 

values of  n  the projection of  f41(nSW) = 4n
2
 + 2n + 41  deflects with every crossing of the line  | y | = | x |  closer to 

the origin via a generic pattern,  see the linear functions in Fig. 5. The discontinuity on the SE main diagonal 

generates a translation over  (1, −1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5:  The function  f41(nSW)  in a Cartesian coordinate system. 
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In the Cartesian coordinate system the projection of the function  f41(nSW) = 4n
2
 + 2n + 41  has infinitely many lattice 

points that coincide with special factorable SE and S functions that contain no prime numbers > p4  (Fig. 5).  

The composite numbers  g  in  f41(nSW) = 4n
2
 + 2n + 41  show patterns like: 

• SE:  g ∈ {a, b, c, d, …   │ g = f41(nSW) • f41(−nSW)  ∨  g = f41(nSW) • f41(nNE) } 

• S:  g ∈ {q, s, u, w, …  │ g = (4 • f41(nSE) + 3 ) • f41(nSW) } 

• S:  g ∈ {q, r, t, v, …    │ g = (4 • f41(−nSE) + 3 ) • f41(−nSW) } 

 

A function value  f (n)  is composite if  f (n) =  dA • dB  with  dx │ f (n),  gcd (f (n), dx) > 1  ∀dx ∈ {dA, dB}  

If  dA  is a divisor, then  dA │ f (n + dA • m)  and  dB(m) =  f (n + dA • m) / dA  with  m ∈ N0.  Also if  dB  is a divisor, 

then  dB │ f (n + dB • m)  and  dA(m) =  f (n + dB • m) / dB.  When  dA(m) = dB(m)  the divisors generate new composite 

function values via a single pattern instead of a double pattern, see point  a  in the table below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Pattern divisor  B  of  f41(nSW)  contains further regularities based on the coordinates and the divisors, see below. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the  (x, y) coordinates of the composite numbers  g ∈ { q,  r,  s,  t, … }  further applies: 

• g ∈ { q,  r,  s,  t, … │ x = c = −k ( 4k − 3 )  from   fc(nE)  with  k ∈ Z }  OR 

g ∈ { q,  r,  s,  t, … │ x = c = −k ( 4k + 3 )  from   fc(nS)  with  k ∈ Z } 

• g ∈ { q,  s, u, w, … │ y = −f41(  nS) = −f41(−nE)  with  nS, nE  ∈ N0  and  nS = nE } 

• g ∈ { q,  r,  t,  v, … │ y = −f41(−nS) = −f41(  nE)  with  nS, nE  ∈ N0  and  nS = nE } 

 

 # f41(nSW) =  4n
2
 + 2n + 41 Coordinate Pattern divisor A Pattern divisor B 

 a f41(20) =   1681 =   41 •   41 A (  21, −20) n = 20 +   41 • m n = 20 +   41 • m 

 b f41(22) =   2021 =   47 •   43 B (  19, −22) n = 22 +   47 • m n = 22 +   43 • m 

 c f41(28) =   3233 =   61 •   53 C (  13, −28) n = 28 +   61 • m n = 28 +   53 • m 

 d f41(38) =   5893 =   83 •   71 D (    3, −38) n = 38 +   83 • m n = 38 +   71 • m 

      

 # f41(nSW) =  4n
2
 + 2n + 41 Coordinate Pattern divisor A Pattern divisor B 

 q f41(41) =   6847 = 167 •   41 Q (    0, −41) n = 41 + 167 • m n = 41 +   41 • m 

 r f41(42) =   7181 = 167 •   43 R (  −1, −42) n = 42 + 167 • m n = 42 +   43 • m 

 s f41(48) =   9353 = 199 •   47 S (  −7, −48) n = 48 + 199 • m n = 48 +   47 • m 

 t f41(51) = 10547 = 199 •   53 T (−10, −51) n = 51 + 199 • m  n = 51 +   53 • m 

 u f41(63) = 16043 = 263 •   61 U (−22, −63) n = 63 + 263 • m n = 63 +   61 • m 

 v f41(68) = 18673 = 263 •   71 V (−27, −68) n = 68 + 263 • m n = 68 +   71 • m 

 w f41(86) = 29797 = 359 •   83 W (−45, −86) n = 86 + 359 • m n = 86 +   83 • m 

 # Pattern divisor B dB(m) │ f41(nSW)  with  m ∈∈∈∈ N0 Sequence  dB(m) 

 a n = 20            + 41 • m 41 • 4m2 + (     20       • 8 + 2) m +    41 {41, 367, 1021, … } 

 b n = 22            + 43 • m 43 • 4m2 + (     22       • 8 + 2) m +    47 {47, 397, 1091, … } 

 c n = 28            + 53 • m 53 • 4m2 + (     28       • 8 + 2) m +    61 {61, 499, 1361, … } 

 d n = 38            + 71 • m 71 • 4m2 + (     38       • 8 + 2) m +    83 {83, 673, 1831, … } 

     

 # Pattern divisor B dB(m) │ f41(nSW)  with  m ∈∈∈∈ N0 Sequence  dB(m) 

 q n = 41            + 41 • m 41 • 4m2 + (     41       • 8 + 2) m +  167 {167, 661, 1483, … } 

  n = (41 – 41) + 41 • m 41 • 4m2 + ((41 – 41) • 8 + 2) m +      1 m  a   m + 1 

 s n = 48            + 47 • m 47 • 4m2 + (     48       • 8 + 2) m +  199 {199, 773, 1723, … }  

  n = (48 – 47) + 47 • m 47 • 4m2 + ((48 – 47) • 8 + 2) m +      1 m  a   m + 1 

 u n = 63            + 61 • m 61 • 4m2 + (     63       • 8 + 2) m +  263 {263, 1013, 2251, … } 

  n = (63 – 61) + 61 • m 61 • 4m2 + ((63 – 61) • 8 + 2) m +      1 m  a   m + 1 

 w n = 86            + 83 • m 83 • 4m2 + (     86       • 8 + 2) m +  359 {359, 1381, 3067, … } 

  n = (86 – 83) + 83 • m 83 • 4m2 + ((86 – 83) • 8 + 2) m +      1 m  a   m + 1 
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The function  f59(nSE)  in a Cartesian coordinate system.  

 

The function  f59(nSE) = 4n
2
 + 4n + 59  from the Ulam 0−spiral appears in het Cartesian coordinate system at   n ≥ 29  

as the SE diagonal  f(n) = 4n
2
 + 236n + 3539  and the corresponding linear projection  y = −x + 59.  For smaller values 

of  n  the projection of  f59(nSE) = 4n
2
 + 4n + 59  deflects with every crossing of the line  | y | = | x |  closer to the origin 

via a generic pattern,  see the linear functions in Fig. 6. The discontinuity on the SE main diagonal gives a translation 

over  (1, −1). 

 

In the Cartesian coordinate system the projection of the function  f59(nSE) = 4n
2
 + 4n + 59  has infinitely many lattice 

points that coincide with special factorable NW and E functions that contain no prime numbers > p4  (Fig. 6).  

The composite numbers  g  from  f59(nSE) = 4n
2
 + 4n + 59  show patterns like: 

• NW: g ∈ {a, b, c, d, e, … │ g = ( ½ • f59(nSE) ) • ( ½ • f59(−nSE) )  with  nSE  a   nSE + ½  } 

• E:  g ∈ {q, r, s, t, u, …  │ g = (4 • f59(nSW) − 3 ) • f59(nSE)  ∨  g = (4 • f59(−nSW − 1) − 3 ) • f59(nSE) } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 6:  The function  f59(nSE)  in a Cartesian coordinate system. 
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The density of prime numbers on SE diagonals.  

 

With the eight families of functions of the Ulam 0−spiral any rectangular area or diagonal can by examined.  Fig. 7 

shows the density of prime numbers in  fc(nSE) = 4n
2
 + 4n + c  up to  fc(nSE) = 10

9
  with  n ∈ N0  and  −20 ≤ c ≤ 60.   

Formally SE diagonals start at their last intersection with the line  | y | = | x |  and thus at a higher  n. 

SE diagonals with  c ≡ 0 (mod 2)  and SE diagonals with  c ∈ {1, −3, −15, …│ c = −4k
2
 + 1  with  k ∈ Z }  contain 

no prime numbers > p4.  A high density of prime numbers is found in  f59(nSE) = 4n
2
 + 4n + 59. 

Other SE diagonals with a high concentration of prime numbers are for example at  c ∈ {−397, −361, 233, 653 }. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Fig. 7:  Prime number density on SE diagonals. 

 

 

Results of the Ulam 0−spiral in a Cartesian coordinate system. 
 

By placing the counterclockwise Ulam 0−spiral in a Cartesian coordinate system concrete research, both analytically 

and geometrically, is possible into the distribution of prime numbers. Any rectangular area or diagonal can be 

examined without fully constructing the spiral.  

 

In the Ulam 0−spiral all natural numbers are completely defined by the eight families of functions  fb,c(n) = 4n
2
 + bn + c,  

with  n ∈ N0,  b, c ∈ Z  and  −3 ≤ b ≤ 4.   

 

For any given natural number in the Ulam spiral the coordinates in the Cartesian coordinate system can be calculated 

via the families of functions in a few steps. 

 

This research shows that the Ulam 0−spiral contains many regularities that are obeyed with stunning precision. 

Despite the clear and explainable patterns on the diagonals in the Ulam spiral no new algorithms (as yet) have been 

found to generate large amounts of prime numbers. 

 

Later studies  defines the Ulam spiral as a  segmented prime spiral  with  m = 4  segments.  

The counterclockwise prime spiral with startvalue  0  and  m  segments is fully defined by the  (2m + 1)  families of 

quadratic functions   fa,b,c(n) = an
2
 + bn + c,  with  n ∈ N0,  m ∈ N,   a = m,  −a ≤ b ≤ a  with  b ∈ Z ,  and   

 c ∈ −

0Z  if  b = a 

 c ∈ Z  if  −a < b < a 

 c ∈ +
Z  if  b = −a 

For  b = a  the function   fa,b,c(n) = an
2
 + bn + c  becomes   fa,b,c(n) = an

2
 + an + c.   

The translation  n a  n − 1  then gives the function  fa,b,c(n) = an
2
 − an + c   and thus  fa,b,c(n) = an

2
 − bn + c.   

The functions   fa,b,c(n) = an
2
 + bn + c  and   fa,b,c(n) = an

2
 − bn + c  give equal results, but for the translation  n a  n − 1.  
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Ulam's open questions. 
 

1.  Are prime numbers equally distributed over each quadrant of the grid? 

 

While studying the Ulam 0−spiral in a Cartesian coordinate system no apparent differences were found in the 

distribution of prime numbers over the quadrants of the grid or in the N, E, S and W sectors. 

 

 

2.  Are there lines that contain infinitely many prime numbers? 

 

Fig. 8 shows for different functions the ratio  r (f (n))  of prime numbers in  f(n)  up to  f(n) = 10
9
. 

The  r (f (n) = n) = 0.05  at  f(n) = 10
9
  corresponds with  π(n) / n ≈  1 / (log(n) − 1)  from the number theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 8:  Prime numbers density in different functions. 

 

The  r (fb,c(n) = 4n
2
 + bn + c)  with  −3 ≤ b ≤ 4  approaches  Cb,c • r (f (n) = n)  by equal function values, with  Cb,c  a 

constant in  R≥0.  The prime number filter function  f(n) = 6n ± 1  also satisfies this pattern, with  C = 3.00. 

Within the Ulam 0−spiral  Cb,c = 0  for factorable members of the eight families of functions.   

In the table below some functions are summarized, amongst others those from Fig. 8. 

  

Function Translation Diagonal in the  0−spiral r  (f(n))         Cb,c 

f−1(nSE) = 4n2 + 4n −     1 n a  n +     1 f(n) = 4n2 +     12n +           7    0.20 C4,−1  = 4.0 

f59(nSE) = 4n2 + 4n +   59 n a  n +   29 f(n) = 4n2 +   236n +     3539    0.32 C4,59  = 6.3 

f41(nSW) = 4n2 + 2n +   41 n a  n +   21 f(n) = 4n2 +   170n +     1847    0.36 C2,41  = 7.1 

f−397(nSE) = 4n2 + 4n − 397 n a  n + 199 f(n) = 4n2 + 1596n + 158803    0.39 C4,−397  = 7.8 

 

This study presents the conjecture that in the Ulam 0−spiral diagonals with prime numbers > p4  contain infinitely 

many prime numbers. 
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Addendum.  Tells of the distinct lines in the Ulam spiral. 
 

In the counterclockwise Ulam spiral with startvalue  0  all natural numbers start out as potential prime numbers. 

Eliminating all natural numbers that are multiples of  p1  gives a checkerboard. 

In  fig. 10a  natural numbers > p4  with  gcd ( fb,c(n), p4# ) > 1 are removed, thus eliminating all natural numbers > p4  

with the diversor  d ∈ {2, 3, 5, 7}. The image already show tells of the distinct lines in the Ulam spiral. 

The primorial  p4#  is the product of the first four prime numbers, see also  "prime numbers and the (double) 

primorial sieve." 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 10a:  The prime numbers  pi ≤ p4  and (possible) prime numbers with  gcd ( fb,c(n), p4# ) = 1. 
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 Fig. 10b:  The prime numbers  pi ≤ p8  and (possible) prime numbers with  gcd ( fb,c(n), p8# ) = 1. 

 

In  fig. 10b  natural numbers > p8  with  gcd ( fb,c(n), p8# ) > 1 are removed, thus eliminating all natural numbers > p8  

with the diversor  d ∈ {2, 3, 5, 7, 11, 13, 17, 19}. The majority of the remaining natural numbers are prime numbers. 

 

 

 

 


